1/5x^2+10=240

Simple and best practice solution for 1/5x^2+10=240 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/5x^2+10=240 equation:



1/5x^2+10=240
We move all terms to the left:
1/5x^2+10-(240)=0
Domain of the equation: 5x^2!=0
x^2!=0/5
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/5x^2-230=0
We multiply all the terms by the denominator
-230*5x^2+1=0
Wy multiply elements
-1150x^2+1=0
a = -1150; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-1150)·1
Δ = 4600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4600}=\sqrt{100*46}=\sqrt{100}*\sqrt{46}=10\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{46}}{2*-1150}=\frac{0-10\sqrt{46}}{-2300} =-\frac{10\sqrt{46}}{-2300} =-\frac{\sqrt{46}}{-230} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{46}}{2*-1150}=\frac{0+10\sqrt{46}}{-2300} =\frac{10\sqrt{46}}{-2300} =\frac{\sqrt{46}}{-230} $

See similar equations:

| 9-3u=30 | | 180=(3x-14) | | -7x=2x-1 | | 12=12+h | | -8=2(-4-2x)-3x | | 2/x=4/x | | 32x-12-16x=4(4x-4)+4 | | 4=-2f | | 180=(6x+59) | | 3•n=13.2 | | 7x-34=2(x+8) | | 3(5x+2-(2(3x-6))=0 | | 4(2x+7)=-25+21 | | 3/7(14p+42)−1/5(20p+35)=1 | | 3/n=13.2 | | 4(2x+7=-25+21 | | 4z2+52z=0 | | 3x-x=3x+8 | | ଷ଻(14p+42)−ଵହ(20p+35)=1 | | 9k+13=-3 | | -6(x-5)=-3(3x) | | .02x+5=8 | | 8+3b=-12 | | 1/2x-7=-4/6 | | 5y+5+3y+5=13y-20 | | 8x+1=5(x+2) | | 3/5x+1/2x=11 | | 2/5(25b-40)=1/4(16b+8) | | -2.3x-6.37=x-3.4 | | 3y-6y=3(2y+9) | | -16+22=m-2 | | 12m+6=4600m |

Equations solver categories